If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15y^2+18y=0
a = -15; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·(-15)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*-15}=\frac{-36}{-30} =1+1/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*-15}=\frac{0}{-30} =0 $
| (x-2)(x+5)+8=0 | | 5^x-3=100 | | 4x+6=6(2x+7) | | 79=5x-11 | | 5x-33=0 | | X^2•2^x-2^x=0 | | 40=x/3+15 | | 11/4c=83 | | 4x-7(x+9)=19 | | 4(z+3)(-z+8)=0 | | G^2-4g=8 | | -166-11x=-3x+50 | | 7.9=i12.7 | | 3.2w=8 | | 86-1x=-8x+107 | | -1x+92=-9x+140 | | 5x+30=-1x+42 | | 76+-3x=-8x+96 | | 16x^2+32x-23=0 | | 60+4x=-2x+84 | | 40x3+34x2-20x=9 | | -2x+95=-12x+165 | | 38+3x=110+-5 | | 73-5x=-15x+163 | | 0.1x^2-0.6x=0.7 | | 4x+40=46+2x | | -78+3x=32+8x | | 102+-4x=192+-14x | | -12x-53=87-7x | | 65+-3x=-6x+83 | | 44=7z+z^2 | | 2(130-x)=1.25(130+x) |